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Abstract

Analogue models made of two layers of loose sand separated by a thin layer of micro glass beads were shortened by a rigid emerging ramp

dipping at either 308 or 458 and possessing a high, intermediate, or null surface friction. Shortening resulted in formation of closely spaced

back thrusts in the sand layers. The dips of the back thrusts vary within a range of 308 depending on the ramp friction, and 78 depending on its

dip. An increase in ramp friction, or, to a lesser extent, in ramp dip, decreases the thrust dips in the model. The second important observation

is that, when friction is greater along the ramp than along the layer of glass beads, then the glass beads layer acts as a separate upper ramp

above which the back thrusts steepen. The theory proposed to explain these observations predicts the thrust dips through a two-step

procedure: first, global equilibrium of forces in the two layers is required to yield the mean forces at stake along the ramps and thrusts, second,

the total dissipation is minimized with respect to the dips of the back thrusts. The relevant frictional properties of our analogue materials have

been measured in stress conditions as close as possible to the experimental ones (below 1 kPa), and used with the theory to yield optimal back

thrust dips that are all within 38 of the measured dips. This is a surprisingly good fit when considering that we did not take into account

geometric changes, strain-softening, and dilatancy or compaction, due to slip on the thrusts. We conclude that this general two-step

theoretical procedure is validated in the context of analogue frictional materials. We also propose a possible mechanism for thrust refraction

and top-to-the-foreland sense of shear observed in the hanging walls of lower-flat to ramp transition in sedimentary piles that is based on the

triggering of secondary upper ramps. Finally, this mechanical approach can also be seen as complementary to the kinematic models of fold-

thrust structures which, by definition, cannot grasp the strong effects of friction on the kinematics.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The transport of a sedimentary sequence from a thrust flat

(‘décollement’) to a thrust ramp (Rich, 1934) is a regular

occurring process in fold-thrust belts. The evolution of flat-

ramp structures have been established with the help of

kinematic models such as the fault-bend fold (Suppe, 1983,

and numerous articles, e.g. Zoetemeijer and Sassi, 1992). A

very important characteristic of these processes is the
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localisation of deformation into narrow ductile hinges

(‘kinks’), or into frictional thrusts (e.g. Laubscher, 1976;

Boyer, 1986), which are precisely rooted at flat-ramp

transition, i.e. at the fault bends. In most of the kinematic

models these kink surfaces are assumed to bissect the angle

between the flat and the ramp in order to conserve the

thickness of the sedimentary layers. Although this is a

widely used approximation for the balancing of cross-

sections at a belt scale, it is clearly insufficient for the study

of single structures. Some early kinematic models assumed

a vertical kink plane (e.g. Endignoux and Mugnier, 1990),

which led to a thinning of the ramp hanging wall as

observed at a crustal scale in the Southern Alps by Little et

al. (2002). Two recent models describe a thickening of the

sedimentary layers (Cristallini and Allmendinger, 2002;

Buil, 2002).
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Table 1

List of experiments

Exp.

no.

Lower ramp properties

Dip (4) (8) Friction angle

(aR1) (8)

Friction

coefficient

Cohesion (cR1)

(Pa)

2 30 34.5–34.8 0.691G0.004 K20G6

3 30 22.8–23.3 0.426G0.005 51G11

4 30 0 0 0

8 45 34.5–34.8 0.691G0.004 K20G6

7 45 22.8–23.3 0.426G0.005 51G11

9 45 0 0 0

The models are identical in all six experiments. Only the dip and the friction

of the lower rigid ramp is varied.
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Maillot and Leroy (2003) have proposed to enrich this

kinematic approach with the mechanical concepts of global

force balance and minimum dissipation. They adopted the

concepts from Merchant (1944, 1945), who proposed it in

the context of metal-cutting. In fact, the present paper

follows Merchant’s experimental approach to validate his

theory. In their theoretical paper, Maillot and Leroy (2003)

predicted that for frictional homogeneous materials, the dips

of the thrusts are as much, or more, controlled by the

frictional properties than by the ramp dip. Luu (2003) has

also generalised the theory to a multi-layer frictional

hanging wall with the help of limit analysis, and Luu

et al. (2004) have done a parametric study of a three layer

hanging wall, which suggests a possible mechanism for

thrust refraction across beds, and for top-to-the-foreland

shear. Although the back thrust dips predicted by Maillot

and Leroy (2003) were shown to be in good agreement with

the dips observed in analogue (Merle and Abidi, 1995;

Bonini et al., 2000) and numerical experiments (Erickson

et al., 2001), a dedicated experimental verification of this

theory was clearly required. This is the first objective of this

article. The second objective is to verify the mechanism for

thrust refraction as deduced from the parametric study of

Luu et al. (2004).

The contents of this article are as follows. We first

develop the theory in a self-consistent manner applied to our

experimental set up. This leads us to include the effect of

cohesion that was disregarded in the analysis of Maillot and

Leroy (2003). An example will allow the reader to

understand how the optimal thrust dips result from the

competing effects of the various sources of dissipation. We

then present in Section 3 a series of six experiments

whereby a model made of two layers of loose sand separated

by a thin layer of micro glass beads is forced to thrust above

a rigid ramp (Fig. 1). The experiments are all identical,

except for the ramp dip (30 or 458) and the ramp friction (see

Table 1). The apparatus and the procedures used to measure

the frictional properties of our materials are discussed in

detail in this section. Finally, in Section 4, we analyze the
Fig. 1. Illustration of the experiments. Top: initial geometry of box and sample ma

or 458, and its surface has a null, intermediate, or high friction (see Table 1), every

thrusts, and illustration of the terminology used in this article.
results of experiments, validate the theoretical predictions,

propose a theoretical generalization of the observations

regarding the conditions for thrust refraction, and briefly

describe a field example.
2. The theory

We present here the theory for a two layer model as

illustrated in Fig. 2a. A rigid ramp (EA) is moving

horizontally at an input velocity vi towards an analogue

model (AFHE) made of two layers of loose sand separated

by a thin layer (GDB) of micro glass beads. Shortening

results in the movement of the two layers (ABDE) and

(BCD) at respective output velocities vo1 and vo2 parallel to

the ramp (EA). We assume that there is no internal

deformation and that the movement therefore occurs only

along the thrust planes (EA) and (DB), which we will call

‘ramp’ 1 (or lower) and 2 (or upper), and along (ED) and

(DC), which we will call ‘back thrusts’ 1 (or lower) and 2

(or upper), respectively. Our goal is to determine the dips q1

and q2 of these two back thrusts that minimize the

dissipation of energy brought to the model by the movement

of the ramp. The strategy is first to consider a given

geometry and kinematics (Fig. 2a), second, to determine all

mean forces acting in the model by requiring global
terials. In the six experiments presented here, the lower ramp dip may be 30

thing else being identical. Bottom: typical steady state geometry of the back



Fig. 2. (a) Illustration of the kinematic parameters. vi, imposed velocity of rigid ramp (EA); vo1, vo2, velocities of lower (BDEA) and upper (BCD) sand layers

relative to the rigid ramp. eil,2, eo1,2 thicknesses of sand layers as drawn. The semi-arrows indicate the sense of shear along the four thrust planes: ramps 1 and 2

(EA and DB) of dip 4; back thrusts 1 and 2 (ED and DC) of respective dips q1 and q2. (b) Free-body diagrams illustrating all forces considered: weights P1, and

P2 of sections (BDEA, right) and (BCD, left); and forces FR1, FR2, FB1, FB2, acting, respectively, on ramps 1 and 2, and back thrusts 1 and 2. Note that these are

total forces acting on each thrust plane, not forces acting on specific points. Decomposition into normal NR1 and tangential TR1 components is illustrated for FR1

only.
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equilibrium (Fig. 2b), third, to calculate dissipations—from

kinematics and forces—along all thrust planes and, fourth,

to minimize the total dissipation with respect to the dips q1

and q2. We now develop these four stages in details.
2.1. Kinematics

We assume that the shortening process is in a steady

state: the dips q1 and q2, and all other geometric parameters,

are constant in time, and do not change with the amount of

shortening. Any relief build-up is fully eroded along the

surface line (AF) (Fig. 2). We assume that the back thrusts

form continuously along the line (EDC) and that all the

deformation is isochoric, and thus neglect dilatation or

compaction due to slip along the thrust planes. Important

kinematic relationships follow. First, velocity compatibility

requires that the components of the velocities perpendicular

to the back thrusts be equal on both sides of these planes:

vi sin q1 Z vo1 sinðq1 C4Þ

vi sin q2 Z vo2 sinðq2 C4Þ;
(1)

i.e. the back thrusts have no thickness, and cannot get

thinner or thicker. Second, requiring a constant volume flux
through the back thrusts yields

viei1 Z vo1eo1 viei2 Z vo2eo2: (2)

Velocities (vi, vo1, vo2), angles (q1, q2, 4), and thicknesses

(ei1, ei2, eo1, eo2) appearing in Eqs. (1) and (2) are illustrated

in Fig. 2a. From Eqs. (1) and (2) above, we obtain the

thickness changes in the layers as they pass from the flat to

the ramp

eo1

ei1

Z
sinðq1 C4Þ

sin q1

eo2

ei2

Z
sinðq2 C4Þ

sin q2

; (3)

which provide a simple way to determine the dips q1 and q2

merely by measuring the thicknesses before and after

crossing the back thrusts. Note that in kinematic models

(Suppe, 1983), q1Zq2Z(pK4)/2, and thus eo1Zei1 and

eo2Zei2 from Eq. (3).
2.2. Forces

We adopt a purely frictional (Coulomb) behavior of the

materials, i.e. non-elastic, perfectly plastic. Thus only a

friction angle and cohesion are required to describe the

material at and beyond failure. aR1 is the friction angle of

the material of layer 1 against ramp 1 (or lower). aR2 is the
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friction angle of the material of layer 1 against the material

of layer 2. aB1 and aB2 are the internal friction angles of the

materials of layers 1 and 2, respectively. cR1, cR2, cB1, and

cB2 are the respective cohesions. The global force equilibria

of the two parts of the hanging wall above the ramp (parts

(ABDE) and (BCD); Fig. 2b), read, respectively:
P1 CFR1 KFR2 CFB1 Z 0 P2 CFR2 CFB2 Z 0: (4)
The solution to this set of equations is developed in detail

in the Appendix.
2.3. Dissipations

With the aforementioned assumption that all deformation

occurs along the thrust planes, only four sources of

dissipation must be considered: DR1 and DR2 along ramps

1 and 2, and DB1 and DB2 along back thrusts 1 and 2,

respectively. Each is defined as the product of the shear

force acting parallel to the thrust with the jump in tangential

velocity across the thrust:
Fig. 3. The four sources of dissipation as functions of the back thrust dips q1 a
DR1 Z TR1vo1 DR2 Z TR2jvo2 Kvo1j

DB1 Z TB1ðvo1 cosðq1 C4ÞKvi cos q1ÞÞ

DB2 Z TB2ðvo2 cosðq2 C4ÞKvi cos q2ÞÞ:

(5)

Full expressions for the shear forces TR1, TR2, TB1, and

TB2 are given in the Appendix. TR1 is also illustrated in

Fig. 2b. The total dissipation is thus:

D Z DR1 CDR2 CDB1 CDB2 Z Fvi; (6)

where

F Z
1

2
rgei1ei2ðkR1 CkR2 CkB1 CkB2Þ (7)

is the force conjugate to vi in the sense of dissipation. The

functions kR1,R2,B1,B2(4, q1, q2, aR1, aR2, aB1, aB2, cR1, cR2,

cB1, cB2, ei1, (ei2) are not written for the sake of conciseness,

but can be easily retrieved from the definitions of

dissipations (5)–(7), and, in the Appendix, the Coulomb

relations (12), and the solution (14)–(17).
2.4. Optimal back thrust dips

The last stage is to minimize the total dissipation (6) with

respect to the thrust dips q1 and q2. The optimal dips are thus
nd q2. The dashed lines indicate the minimum values, where applicable.
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solutions of the coupled equations

vk

vq1

Z 0 and
vk

vq2

Z 0; (8)

where kZkR1CkR2CkB1CkB2 is the total dimensionless

dissipation. Unfortunately, these lengthy coupled equations

do not have analytic solutions and must be solved

numerically using a root finding, or a minimization method.

We chose here a minimization method on the function k

using a mathematical free software (www.scilab.org). It

should be noted that kR1,R2,B1,B2 are only functions of the

dips of the ramps and back thrusts, of the eight friction

parameters (friction angles and cohesions), and of the

thickness ratio ei1/ei2. The optimal dips are thus independent

of the volumic mass of the materials, and of the absolute

values of thicknesses. Furthermore, the analysis of Maillot

and Leroy (2003) showed that they are also independent of

the flat thrust length (line HE in Fig. 2a).
2.5. Example of dissipation analysis

As an example, we take a set of parameters that is very

close to our experiments: the ramp dips at 308, layer 1

(lower layer) has an internal friction angle aB1Z308, a

friction on the ramp 1 aR1Z338, a friction with layer 2

(upper) aR2Z228, and the layer 2 (upper) has an internal

friction angle aB2Z308. All cohesions are set to zero. The

thicknesses of layers 1 and 2 are ei1Z10 mm and ei2Z
9.5 mm, respectively. From these parameters, we can

compute the four sources of dissipation as functions of q1

and q2 and examine their respective effects on the optimal

dips. The four normalized dissipations (i.e. the functions

kR1, kR2, kB1, and kB2) are each illustrated in Fig. 3, while

Fig. 4 shows their sum, of which the minimum gives the
Fig. 4. Total dissipation as a function of the back thrust dips q1 and q2.

q1z278, and qz358 are the optimal dips in the sense of dissipation.
optimal dips (indicated by the dashed lines). Several

comments are now in order. First, dissipation along the

lower ramp (Fig. 3a) is relatively insensitive to the upper

back thrust dip, and strongly dependent on the lower back

thrust dip, for which it promotes very low dips (q1!108).

Second, dissipation along the lower back thrust (Fig. 3b) is

even more insensitive to the upper back thrust dip, and tends

to promote intermediate values of the lower back thrust dip

(around 428). Third, dissipation along the upper ramp

(Fig. 3c) is equally sensitive to q1 and q2, and promotes a

geometry where q1Zq2, regardless of their actual values. In

other words, it promotes the development of a single planar

back thrust through the two layers. If this happens, then we

can see from Eq. (1) that vo1Zvo2, and that therefore, from

Eq. (5), second equality, the dissipation DR2 along the upper

ramp is exactly null. Of the four sources of dissipation, it is

the only one that can disappear because the upper ramp can

be locked, but none of the others. Fourth, dissipation along

the upper back thrust (Fig. 3d) is completely insensitive to

q1, and promotes intermediate values of q2 (around 508),

similarly to the dissipation along the lower back thrust with

respect to q1. Finally, dissipations in the lower layer (Fig. 3a

and b) are approximately 10 times higher than those in the

upper layer (Fig. 3c and d), and we, therefore, expect q1 to

be better constrained than q2.

Fig. 4 shows the sum of all sources of dissipations. The

total dissipation now shows clearly a minimum (kminZ8.7)

that defines uniquely the optimal dips q1Z278 and q2Z358.

The contour curve 8.8 is only 1.15% higher than the

minimum, and indicates the range of dips q1 and q2 that

would produce a total dissipation that is within 1.15% of the

minimum. This range is large: 238%q1%328, and, as

expected, larger for q2: 268%q2%458. This apparently

suggests that minimizing the dissipation does not yield

strong constraints on the thrust dips. In fact, the

experimental results (Section 4), will prove to be, on

average, all within 38 of the theoretically optimal dips.

Since our experiments were designed to highlight the

effect of the friction on the lower ramp, we first show this

effect in the theoretical example, with the help of Fig. 5.

Keeping the parameters of the example unchanged, and

letting only the friction angle of the lower ramp, aR1, vary

from 0 to 508, yields optimal back thrust dips that decrease

from 60 to 208. For aR1%aR2Z228, q1Zq2, a single back

thrust develops, and the upper ramp is not activated

(Fig. 3c). When aR1OaR2Z228, then q1!q2, the lower

back thrust is refracted into a steeper back thrust in the upper

layer, and the upper ramp is activated. In this situation of

thrust refraction, the upper back thrust becomes independent

of the lower ramp, its dip being essentially controlled by the

friction on the upper ramp. Since our analogue materials

exhibit small amounts of cohesion, we also show on this plot

the effect of adding a cohesion of 50 Pa on the lower ramp:

the optimal thrust dips are decreased by 38 to 208, and the

thrust refraction occurs for a lower value of aR1, but the

qualitative behavior remains the same. For comparison, we

http://www.scilab.org


Fig. 5. Illustration of the effect of the friction on the lower ramp (aR1) on the

back thrust dips q1 (solid lines) and q2 (dashed lines), assuming a cohesion

cR1 of 0 and 50 Pa. For comparison, the dotted line indicates the back thrust

dips assumed in kinematic models.
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indicate as a dotted line the back thrust dips that would be

assumed in classical kinematic models of fault-bend folds

that disregard the effect of friction.
3. Description of experiments

A series of six experiments was made to test the validity

of the theory presented above. A generic initial and final

state of experiment is illustrated in Fig. 1. A model made of

two layers of Nemours sand separated by a thin layer of

micro glass beads, with respective thicknesses of 10, 1, and

9 mm is placed in a 200!200!100 mm plexiglass box in

which a rigid plexiglass ramp was installed beforehand (line

(EA) in Fig. 2). The glass beads layer plays the role of a

second ramp (line (GDB) in Fig. 2). In all experiments we

have tried to be consistent during the preparation of the

layers; pouring sand in small amounts on the surface of the

model and scraping the sand pile to a horizontal layer, not

more than 3 mm thick at a time. Colored marker horizons
Fig. 6. Schematic diagram of the apparatus designed
(each about 0.1–0.3 mm thick) were sprinkled on the

surface after each scraping step, to act as strain markers.

This somewhat laborious procedure has the central

advantage of providing reasonably reproducible samples.

The list of actual models prepared with this procedure is

given in Table 1. In experiments 2–4, we fix the rigid ramp

dip at 4Z308, and vary the friction along it. In experiment

2, a P150 sandpaper was glued on the ramp, providing a

higher friction than the internal sand friction. In experiment

3, a fiberglass sheet was glued on the ramp, providing an

intermediate friction. In experiment 4, the ramp was slid

under a fiberglass sheet above which the model was placed,

thus providing a zero friction surface since there was no

relative displacement between the sand and the fiberglass

sheet during the transport of the sand layers over the ramp.

The measurement of these friction parameters is detailed in

Section 4. Experiments 8, 7, and 9, are, respectively,

identical to experiments 2, 3, and 4, but with a rigid ramp

dipping at 4Z458.

Every model was then shortened by pushing the rigid

ramp into the model at a constant velocity viZ22 cm/h. The

shortening was stopped every 10 mm to remove any

material forming a relief, with the same scrapping apparatus

as that used to prepare the model (the maximum relief

height was around 5 mm). The total applied shortening was

in all cases sufficient to reach a steady state in the model.

Once the maximum shortening allowed by the geometry of

the box was reached, the final relief build up was not

scrapped, the model was wetted, then cut parallel to the

shortening direction (i.e. perpendicular to the ramp), then

photographed to analyze in detail the geometry of the back

thrusts and compare it with the theoretical predictions. This

is discussed in Section 4.
3.1. Properties of experimental materials

In order to test our dissipation theory against the

experiments, we measured the failure envelopes of the

experimental materials. This was done independently of the

experiments, but also in conditions as close as possible to
to measure friction coefficients at low stresses.
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the experimental ones, i.e. at stresses below 1 kPa. This is

why the failure envelopes (friction coefficient and cohesion)

were determined with a specifically designed apparatus

illustrated in Fig. 6. The two plexiglass rings, separated just

enough not to touch each other, are filled by slowly pouring

in the granular material. The top ring (of internal diameter

68 mm and height 35 mm) is then pulled horizontally, i.e.

parallel to the fixed bottom ring, by adding weights at the

other end of the string on which it is attached (right side of

Fig. 6). The plexiglass bar between the ring and the string is

held by 12 ball bearings ensuring a precise translation of the

ring without rotation, and with very little friction (about

10 g where needed to move the top ring in the absence of

granular material). We interpret as the peak shear load the

lowest weight sufficient to trigger a large irreversible

movement of the top ring. These weights were determined

to within about 10 g. We then start again the whole

procedure several times, adding increasing weights on a lid

placed on the top surface of the granular material. The

weights are then converted to normal and shear stresses.

This measurement procedure is essentially the same as that

proposed by Schellart (2000).

The Nemours sand used in the models was provided by

the Division Géologie, Géochimie of the Institut Français du

Pétrole. It is a natural sand sieved between 80 and 120 mm

with a sharp peak at 100 mm. Its density is 1.53G0.02. The

grain size of the micro glass beads, the second granular

material used in the models, ranges between 50 and 100 mm,

and its density is 1.46. Densities were measured by slowly

pouring the material into a container similar to our friction

apparatus. The internal frictions of the Nemours sand and

the glass beads are computed from a linear regression of the

data with error bars shown in Fig. 7. In terms of friction

angles, this gives 30.3–32.88 for the Nemours sand, and

18.7–22.88 for the glass beads. The cohesions are,
Fig. 7. Failure envelopes for the Nemours sand and the glass beads. A linear

regression gives tZ ð0:615G0:03Þsn C80G22 (the friction angle ranges

from 30.3 to 32.88) for the Nemours sand, and tZ ð0:38G0:04Þsn C79G

29 (the friction angle ranges from 18.7 to 22.88) for the glass beads.
respectively, 80G22, and 79G29 Pa. They prove to be

relatively high compared with the stress levels of a few

hundred Pascals expected in the experiments, and they are

accounted for in the theoretical approach. The friction of the

Nemours sand against the P150 sandpaper and the fiberglass

sheet was determined in the same way, simply replacing the

bottom ring by a plexiglass board on which we glued the

material to be tested. The results and the linear regression

are shown in Fig. 8. In terms of friction angles, this gives

34.5–34.88 for the sandpaper and 22.8–23.38 for the

fiberglass sheet, with respective cohesions of K20G6 and

51G11 Pa, as listed in Table 1.

Our measurement method has drawbacks that we

discuss now. First, by measuring only the peak shear

load, and, therefore, ignoring the strain-softening, we

probably overestimate the friction on the imposed ramp

which is continuously active. This is consistent with our

theoretical approach, which assumes a constant friction,

and will be further discussed in Section 4. Second, the

deposition procedure of the sand does not include the

scrapping step used in the construction of the models, and

the shear surface is horizontal, whereas it is oblique in the

models. Although not measurable with our method, these

differences can only have a small effect in view of the fit

between experiments and theory that we present in

Section 4. Finally, friction on the side walls of the ring

apparatus reduces the normal stress applied on the tested

shear surface, yielding an overestimated cohesion and an

underestimated friction angle. This silo effect is, however,

small because the diameter of the ring is twice its height

(Mourgues and Cobbold, 2003). Furthermore, its opposite

effect on the friction coefficient and the cohesion would

produce a small change of our theoretical predictions, as

illustrated by Fig. 5.
Fig. 8. Failure envelopes of the Nemours sand against P150 sand paper, and

against fiber glass sheet. Linear regressions give tZ(0.691G0.004)snK

20G6 for the sand paper, and tZ(0.426G0.005)snC51G11 for the fiber

glass sheet. In terms of friction angles, the sand paper gives 34.5–34.88, and

the fiber glass sheet, 22.8–23.38.
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4. Analysis of the experiments
4.1. Methods of measurements

Seven to nine cross-sections parallel to the shortening

direction were analyzed for each of the six experiments,

taken roughly every 2 cm perpendicular to the strike of the

ramp. The thrust dips q1 and q2 were directly measured by

joining the kinks in the color markers, which are produced

by the slip along the thrusts. Examples of such interpret-

ations are shown by the oblique black solid lines in the ramp

hanging walls of the experiments 2, 3, 8, and 7 (Figs. 9 and

10). For experiments 4 and 9, which were shortened above a
Fig. 9. Photographs of typical model cross-sections used to determine the back thr

lines represent the interpreted back thrusts. For model 4 (top), there are no kinks in

of departure from a straight horizontal line of the color markers.
frictionless ramp, there were no visible kinks in the layers.

Therefore, we joined the points of departure from a straight

line of the color markers. These are again shown as solid

black lines in Figs. 9 and 10.
4.2. Fit between experiments and theory

Table 2 summarizes all mean measured and theoretical

dips, and their differences. Fig. 11 is a graphical

representation of all measured dips, and of the theoretical

dip ranges. For each experiment (horizontal axis in Fig. 11),

the first column concerns the lower back thrust dip (q1), and

the second, the upper one (q2). The double-headed solid
ust dips in experiments 4 (top), 3 (middle), and 2 (bottom). The solid black

the color markers, and the thrust dips were determined by joining the points



Fig. 10. Photographs of typical model cross-sections used to determine the back thrust dips in experiments 9 (top), 7 (middle), 8 (bottom). Otherwise, same

caption as Fig. 9.
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arrows indicate the maximum and minimum measured

values. The range of these values is large (between 2 and

128), because of the irregularity and anastomosing character

of the thrusts. We will, therefore, concentrate our analysis

on the mean values, indicated by the black dots. This is

further justified by our theoretical approach, which

considers mean forces on the thrusts and thus provides

predictions of mean dips. The theoretical predictions are

shown as black bars. Their sometimes large range (up to 68)

is due to the uncertainties on the material properties. This is

acceptable, however, because the predicted dips of all
experiments range over 308, i.e. five times more than the

larger uncertainty of a single experiment.

Fig. 11 shows that all theoretical predictions, for both

lower and upper thrusts, are within the range of observed

experimental dips. Furthermore, the mean observed dips for

different models, ranging from 27 to 588, are at most 38

away from the predictions (columns 6 and 7 of Table 2). We

conclude that the theory predicts correctly the mean dips of

the thrusts. This is in contrast to the apparently poor

selectivity observed in the example of Section 2, where a

variation of 58 of q1, or 108 of q2, around their optimal value



Table 2

List of experimental results, theoretical predictions, and differences between them

Exp. no. Mean observed dips (8) Theoretical dips (8) Difference (8)

�q1
�q2 q1 q2 q1 K �q1 q2 K �q2

2 28.6 32.1 31.6–35.8 32.4–38 3 0.3

3 32.6 33.3 30.8–36.6 31.8–38 0 0

4 58.6 59 58.6–59.6 58.6–59.6 0 0

8 26.5 33.5 27.4–31.4 28.8–35.2 0.9 0

7 28.5 32.5 29.2–33.8 30–35.2 0.7 0

9 52.5 52.5 51–52.4 51–52.4 0.1 0.1

A graphical representation is given in Fig. 11.
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resulted in a total dissipation only 1.15% higher than the

optimal value. Here, considering the least successful

experiment, BD2, the discrepancy for q1 is 38, and 0.38 for

q2. Thus, we observe that the analogue models are able to

find the optimum geometry with a very high precision on the

dissipated energy.

We have also deduced the back thrust dips by measuring

the thickness changes of layers between the flat and the

ramp and using the thickening relations (3). The dips thus

obtained are consistent with, but systematically higher than

those measured directly, and on average, 58 higher than the

theoretical predictions. This means that there is less
Fig. 11. Comparison between the theoretical and experimental results for all

six experiments. For each experiment, the left column concerns q1, i.e. the

lower back thrust dip, and the right column concerns q2, the upper back

thrust dip. Solid double arrows show the minimum, maximum, and average

(black dot) measured dips. The black bars show the optimal dip ranges with

respect to dissipation (i.e. our theoretical predictions). The horizontal white

bars show the dips assumed in most kinematic models of fault-bend folds:

q1Zq2Z(pK4)/2, where the ramp dip 4 is 308 for experiments 2, 3, and 4,

and 458 for experiments 8, 7, and 9. Hence, in kinematic models, no

variation of back thrust dip is anticipated between cases with different ramp

frictions.
thickening than expected by Eq. (3), and strongly suggests

that the assumption of volume conservation (2) is not

adequate for the development of thrusts in dry sand, a fact

acknowledged by others indeed (e.g. Lohrmann et al.

(2003), for such measurements at stresses below 1 kPa). A

generalization of the theory to variable densities could be

envisaged, but it is not within the scope of the present

article.

4.3. Theoretical interpretations of the observations

Having established the validity of the dissipation theory

to predict the dips observed in our experiments, we now

propose some interpretations of the results in the light of the

theory. We consider the effects of the ramp friction, and dip.

The comparison of experiments 2, 3, and 4 shows that the

theoretical thrust dips (both lower q1 and upper q2) are

decreasing functions of the lower ramp friction, which has a

major influence on them (see also Fig. 5). The comparison

of pairs of experiments, 2 and 8, 3 and 7, and 4 and 9, which

have the same ramp friction but different ramp dip, shows

that both thrust dips are also decreasing but smoother

functions of the lower ramp dip. These theoretical

tendencies are well reproduced by the mean experimental

values. They can be understood as follows: as friction

increases along the rigid lower ramp, or as the ramp

becomes steeper, the excess dissipation in the model is

reduced by reduction of the normal stress on the ramp. This

is done by reducing the back thrust dip, thus enabling a

better forward movement of the hanging wall, which

relieves the normal stress it exerts on the ramp.

One conclusion that can be drawn from the present work

is the condition under which the lower and upper back

thrusts can have different dips, although they occur in the

same material. In experiments 2 and 3, where friction along

the ramp is high, only q1 is sensitive to the change in ramp

friction, while in experiment 4 where ramp friction is zero,

both angles are. The same can be said of experiments 8, 7,

and 9, respectively (Fig. 11). The theoretical ranges of

Fig. 11 describe this behavior. They show that as long as the

friction on the lower ramp is less than that of the upper ramp

(experiments 4 and 9), both thrusts have the same dip, and

there is no slip on the upper ramp. When the lower ramp
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friction increases above that of the upper ramp (experiments

2, 3, 8, and 7), then the upper ramp becomes active and

imposes a steepening of the upper back thrust through the

very mechanism explained above for the lower ramp. This

thrust refraction resulting from the activation of a secondary

upper ramp finds a clear expression in the topography of the

models of experiments 7 and 8 (Fig. 10), where the two

ramps produce a relief simultaneously. The effect is less

pronounced for experiments 2 and 3 (Fig. 9) because the

ramp is less steep, but it can still be observed on other cross-

sections along strike, which are not shown here. Thus the

conclusion can be summarized as

aR1%aR20q2 Z q1 ðplanar thrustÞ

aR1OaR20q2 Oq1 ðrefracted thrustÞ;
(9)

if we neglect the effect of cohesion (Fig. 5). In our

experiments the cohesion is not negligible compared with

the magnitudes of the acting forces, but it is negligible in

real structures. The generalization of the present theory to

any number of layers, and the parametric study for three

layers (Luu, 2003; Luu et al., 2004) have reached these

conclusions, which, again, can now be considered to be

validated by the present experiments. The fact that q2!q1
Fig. 12. An example of kink fold in the Gushi Marls (Miocene) of the Iranian

thickening and top-to-foreland (westward) bed parallel slip (inset), materialized by

Lallemant of the University of Cergy-Pontoise.
does not happen throughout the six experiments, and cannot

happen theoretically, has an interesting consequence: the

back thrusts will always be refracted so as to define an

overall shape that is concave upwards. Because of the

velocity compatibility (1), the upper hanging wall will

always rise as fast as, or faster than, the lower one. This

remains theoretically true for ramp hanging walls made of

any number of layers, where the activation of secondary

upper ramps is more widely referred to as bedding-parallel

slip. This constitutes a possible explanation of the top-to-

foreland sense of shear observed in the hanging wall of ramp

related folds.

The empty rectangles in Fig. 11 indicate the back thrust

dips generally assumed in kinematic models of fault-bend

folds. They bissect the lower flat-ramp angle (q1Zq2Z(pK
4)/2), so as to conserve the thickness between the flat and

the ramp. Obviously, these assumptions are not valid in our

experimental fault-bend folds. First because there is

thickening, both observed and predicted by our theory

(although the latter is overestimated), and second, because

the dips depend less on the ramp dip than on the ramp

friction, which cannot be taken into account in kinematic

models. These remarks have potentially important con-

sequences on the balancing of cross-section using these
Makran. After crossing the kink axis towards the west, the marls exhibit

inter-bed calcite growth. Photographs and measurements by Prof. Siegfried
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models, or on the determination of blind thrust geometries

from the surface topography as proposed by Savage and

Cooke (2003).

Persson (2001) made various observations on the spatial

periodicity of the thrusts developing above a rigid ramp, but

with a single type of ramp surface (plexiglass). Hence, in the

current models, the important effect of the ramp friction on

the periodicity of the thrusts is highlighted: in experiments 4

and 9 (frictionless ramp), the thrusts form continuously

because there are no visible kinks in the color markers, in

contrast to the four other experiments. However, this

important question of back thrust periodicity in the ramp

hanging wall cannot be addressed with the present form of

our theory, because it is probably related to the strain-

softening characteristics of our materials, which are not

accounted for in the present study.

Finally, we present a field example that illustrates

qualitatively some of our conclusions. Fig. 12 shows a

synclinal kink in the Gushi Marls (Miocene) of the Iranian

Makran, by the village of Gaz (GPS: 26805 057 00 N,

57816 012 00 E). The fold axis is horizontal with an azimuth

N 1558, and the marls slide from East to West, first on the

lower flat dipping 38 to the East, then on the ramp dipping

308, thus forming a kink fold, with an axial plane dipping

608 to the West. After passing the kink axis, the marl layers

exhibit numerous tension gashes parallel to the bedding,

which are filled with calcite fibers. The fibers indicate first

an opening perpendicular to the bedding (equivalent to an

overall thickening of the beds), then top-to-foreland slip

added to the opening (oblique fibers). This thickening is

consistent with the dip of the kink axis (608), which is

substantially less than the bissector of the fold (738, as

would be assumed in kinematic models), and implies

therefore thickening of the beds. Both observations

(thickening and slip) are consistent with the behavior of

our analogue models, and with our theory. Of course, the

deformation of the Gushi Marls is essentially ductile

(despite the occurrence of a few fractures dipping at 458),

in contrast with our frictional models. The more appropriate

ductile version of the theory leads to the same conclusions

about thickening and bed-parallel slip (Maillot and Leroy,

2003).
5. Conclusion

The six analogue experiments presented here were

designed to study the passage of a two layer frictional

material from a horizontal lower flat to a ramp, and to

validate the mean dissipation theory of Maillot and Leroy

(2003). The mean thrust dips forming in each layer of the

models spread over 308, and are reproduced by the

dissipation theory to within 38, thus validating it. These

dedicated experiments were necessary to validate the

theory because published analogue experiments often

address much more complex structures, do not provide
all relevant friction data, or provide them in stress

conditions that are too far from the experimental ones

(Schellart, 2000). These experiments also allow us to draw

conclusions with a geological relevance. We showed that

both observed and predicted thrust dips are much lower

than those assumed in kinematic models. Such differences

are significant when balancing cross-sections or interpret-

ing surface topography using these models. Our models

and theoretical results show that the ramp friction has a

‘first order’ effect on the size, thickness, and velocity of its

hanging wall. Maximum thickening, and minimum

velocity, are observed in the experiment with highest

ramp friction and steepest ramp.

Both lower and upper thrust dips appear to be decreasing

functions of the dip and friction on the ramp, the latter

showing a very pronounced effect. Furthermore, slip

between the two layers can only occur if friction is lower

than that on the ramp. This is also the condition for thrust

refraction across the beds, and constitutes a possible

mechanism for the ‘top-to-foreland’ sense of shear observed

in the hanging wall of fault-bend folds.

The good fit of the optimal thrust dips to the observed

ones is a remarkable result when considering the simplicity

of the theory that is presented here in a self-consistent

manner. In the theoretical approach, we did not take into

account geometrical changes, strain-softening, and dila-

tion/compaction due to slip on the thrusts. No finite-

element discretization is required, and the main kinematic

features are adopted from the kinematic models, and then

optimized through an essentially analytic approach. The

dissipation theory first proposed by Merchant (1944, 1945),

adapted by Maillot and Leroy (2003) to frictional and to

ductile materials, and validated here for frictional

materials, offers therefore a method to improve the

kinematic models and to interpret the analogue models

by introducing the concepts of global force balance and of

minimum dissipation, through simple and versatile

procedures.
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Appendix. Resolution of the global force balance

We solve here the two global force balance equations (4),

also illustrated in Fig. 2. First, the weights of the lower and

upper hanging walls can be deduced directly from Fig. 2a:

P1 Z rgei1

1

2
ei1 Cei2

� �
sinðq1 C4Þ

sin q1 sin 4

P2 Z rg
1

2
e2

i2

sinðq2 C4Þ

sin q2 sin 4
:

(10)

Second, the forces acting along the four thrusts can be

expressed as a normal (N) and a tangential (T) component

with respect to each thrust. This decomposition is illustrated

in Fig. 2b for FR1. Developing all force components in the

(x, y) framework (Fig. 2a) in terms of their normal and

tangential components yields:

FR1x
ZKcos 4TR1Ksin 4NR1

FR1y
ZKsin 4TR1 Ccos 4NR1

FR2x
ZKcos 4TR2Ksin 4NR2

FR2y
ZKsin 4TR2 Ccos 4NR2

FB1x
ZCcos q1TB1 Csin q1NB1

FB1y
ZKsin q1TB1 Ccos q1NB1

FB2x
ZCcos q2TB2 Csin q2NB2

FB2y
ZKsin q2TB2 Ccos q2NB2:

(11)

Note that FR1x
corresponds to the horizontal shortening

force applied to the moving rigid ramp by the electric motor

of the sand box (if we neglect the friction of the rigid ramp

on the floor and side walls of the box). The force

components tangential to the thrusts are related to the

normal components through the Coulomb relation tZ
tan asnCc, after integration over the thrust lengths:

TR1 Z tan aR1NR1 Cc0R1 TR2 Z tan aR2NR2 Cc0R2

TB1 Z tan aB1NB1 Cc0B1 TB2 Z tan aB2NB2 Cc0B2;
(12)

where

c0R1 Z cR1

ei1 Cei2

sin 4
c0R2 Z cR2

ei2

sin 4

c0B1 Z cB1

ei1

sin q1

c0B2 Z cB2

ei2

sin q2

;

(13)

are the cohesions of the thrusts multiplied by their

respective lengths. Note that the quantities in (12) are

total shear forces acting on the thrusts, not stresses. Then,

combining Eqs. (11)–(13) with equilibrium equations (4)

yields four equations with the four unknowns NR1, NR2, NB1
NB2. The solutions are

NR1 Z
cos aR1

sinðq1 C4 CaB1 CaR1Þ

sinðq1 C4 CaB1 CaR2Þ

sinðq2 C4 CaB2 CaR2Þ

�

!ðP2 sinðq2 CaB2ÞCc0B2 cos aB2

Kc0R2 cosðq2 C4 CaB2ÞÞCP1 sinðq1 CaB1Þ

Kðc0R1Kc0R2Þcosðq1 C4 CaB1ÞCc0B1 cos aB1

�

(14)

NB1 Z
cos aB1

sinðq1 C4 CaB1 CaR2Þ

sinðaR1 KaR2Þ

sinðq2 C4 CaB2 CaR2Þ

�

!ðP2 sinðq2 CaB2ÞCc0B2 cos aB2

Kc0R2 cosðq2 C4 CaB2ÞÞCP1 sinð4 CaR1Þ

C ðc0R1Kc0R2Þ cos aR1Kc0B1 cosðq1 C4 CaR1Þ

�
;

(15)

NR2 Z
cos aR2

sinðq2 C4 CaB2 CaR2Þ
½P2 sinðq2 CaB2Þ

Cc0B2 cos aB2 Kc0R2 cosðq2 C4 CaB2Þ�; (16)

NB2 Z
cos aB2

sinðq2 C4 CaB2 CaR2Þ
½P2 sinð4 CaR2Þ

Kc0B2 cosðq2 C4 CaR2ÞCc0R2 cos aR2�: (17)

Eqs. (14)–(17), along with the Coulomb relations (12), give

the solution of the global force balance (4) in terms of the

mean forces along the thrusts.
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